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ABSTRACT Xk - Space coordinates, Lagrangian description, m

The nonlinear thermoelastic equations are examined. z - Complex variable, C1+ i c
considering large deformations and temperature-dependent 2 - Coefficient of linear thermal expansion, lA
material parameters. Emphasis is on high-speed sliding - Coefficient of bulk thermal expansion .

contacts, wherein high temperatures tocalize near the (3k + 2W)r, Pa/K
contact surface, contributing to significance there of " * Dilatation rate, conventional (small strain)
coupling terms neglected in elementary theory. )Ck notation, I/s

Tk - Transformed space variables, k -1,2
- Boundary layer (stretched) thickness

A - Coefficient matrices for governing equations coordinate
Ak - Combinations of elastic parameters, Eqs. (20); , = Lame parameters, Pa

alternatively, complex coefficients defined . Friction coefficient
following Eqs. (10), (k 1 .. , 5) v - Poisson's ratio

a - Complex coefficients of material inhomogene- vk . Third order elastic parameters, notation of
ity, Eqs. (10), n-l,2 Toupin and Bernstein, k-1,2,3

a -aHalf contact width, a - Dimnsionless space variables, /, k- 1,2
B Vector, nonhomogeneous part of difference k i Xk/equations 00 . Reference density, kg/m

3

Bj bussinesq-Papkovitch functions, j -0,2 rij . components of Piola-Kirchhoff Stress,
CE .Specific heat at constant deformation (or First Kind, Pa

at constant volume for subscript v), J/(kg'K) 4,Y - Analytic functions
c o  value of c E at reference temperature TO  %, f - Generalized analytic functions

Ei Lagrangian strain components lk - Generalized Cauchy kernels, Eq. (1I)

E - Young's modulus, Pa ulk * Exponential factor for 'lk
f - Thermal dependence of cE, CE/co; alternative- W. - Relaxation factors, Eq. (14)

ly, scalar function of v
g - Thermal dependence of k, k/k INTRODUCTION

- Gradient of f(U), bf/ZU Generation of large amounts of heat near the sur-
H - Hessian matrix of f(U), Eq.(15) face of a thermoelastic body subjected to fast-moving

- Finite difference grid spacing for 9k' contact loads is a generally recognized occurrence.
k . 1,2 Important in such a situation is the thermally-induced

k - Thermal conductivity, W/(ie'K) deformation, affecting the contact stress distribution
k - Value of k at reference temperature T which, in turn, affects the heat input. Stabilization

- 2a, contact width, m by limitation of temperatures and deformations to

M - mechanical equivalent of heat, 1.0 N4'rVJ steady-state values follows only if deformations are
P - PcletNumber, defined following Eq. (7) balanced by wear 1,2] leading to maximum possible con-

o tact after "wearing-in."

Pni- Traction coefficients, Eqs. (20), Pa Simple contact configurations permit temperature
p - Contact pressure, p( g), Pa measurements by either noncontacting infrared devices

SHeat- flux, Lagrangian description, W or thermocouples embedded without disturbing temperature

S - Nonhomcjeneous part of complex traction flow (1-31; surface deformations are inferred from
boundary condition, Eqs. (10); alternatively, laser/photocell system measurements of surface clear-
quadratic scalar function of U, q. (18) ances [3]. Such measurements, however, are insufficient

T - Temperature, aC for complete descriptions of temperatures and deforma-
T - Reference temperature, 293 K (528 0 R), unless tions and must be supplemented by analysis. Accurate

0 indicated otherwise analytical predictions aid interpretation of experi-

T' - Dimensionless temperature, (T-To)/T mental results and provide guidance for situations

t - Time, a wherein measurements are not feasible.

U - Solution vector Conventional thermoelastic analyses (linear, un-
Uk - Dimensionless displacement components uk/1 coupled thermal and elastic effects) often give tempera-
Ska Cisplacement components, k- 1,2 ture predictions at variance with results of wear tests.

i c, under examination herein is the significance of therm-

- V - Speed of contact sliding, m/S elastic nonlinearities, viewed toward explaining such
v ijk - Generalized wave speeds, Eqs. (19), m/s discrepancies. The following observations are pertinent

w - Generalized analytic function, w(z,!) in this respect:
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1. Apparent temperature jumps across the contact
surface and other anomalies are predicted in extrapola-
tions, by conventional theory, from near-surface em-
bedded thermocouple readings (3].

2. Neglect of thermoelastic coupling is usually
based on considerations that tacitly assume only moder-
ate heat generation (4]. Temperatures of several
hundred degrees generated in high-speed sliding, how-
ever, can render the coupling terms significant.

3. Usual treatments of thermoelastic coupling con- X"
sider only dilatational effects. Significant tempera- Vt
ture buildups have been generated experimentally, how
ever, under repeated cycling of elastic deviatoric
strains (5].

4. Variation of thermal parameters with temperature
can significantly affect heat conduction in sliding con-
tacts, as analysis demonstrates (61.

The reality of irreversible, often large, deforma- Xi
tions and/or strains accompanied by heat generatioz.
under inelastic conditions led long ago (71 to recogni-
tion of the importance therein of thermomechanical
coupling. In thermoelasticity, however, a typical argu-
ment (4] considers only the simplest coupling, involving

a dilatational term in the heat conduction equation with
magnitude governed by the factor 3(aTO/pcv)(,/3*].
Using isothermal values of 5 ' c. for a typical steel
and for aluminum and 366 K (660 R for To, the factor
3 (5T o /pc,) is evaluated as 0.01793 and 0.03714, Figure 1 Schematic Diagram of the Half-Space
respectively; it is concluded that coupling is negli- Subjected to Mechanical and Thermal
gible if (kk/3ca) <<20 and this is assumed to be the Loading
case. On the other hand, high-temperature values (8-10]
of a, a, c, for a typical steel at 665

0
C (1230PF) - an frictional force generates dissipative energy that pro-

attainable dry sliding surface temperature (6] - give duces a heat source with flux Q(X1 )= V ,p(X%)/M; the
0.1576 for 3(0*T/0c,). Thus, even if [ikk/3at) is only remainder of the surface is assumed insulated. Pres-
of order 1.0 the coupling term in this case has an order sure p(XI) is considered to be the force on the deformed

16% of the basic term oc.T. The apparent importance surface per unit area of undeformed surface, since the
of this simplest coupling term suggests examining the deformed shape is not known a pri . Thus, the applied
significance of additional relevant coupling terms, as loads are surface tractions related to Piola-Kirchhoff
well. stresses of the First Kind Zj (13-15]. Similarly, heat

flux Q(X) is that referred to the undeformed solid
THEORY [13-I5].

Analytical Model Governing Equations

Evidence that high-speed siiding contact situations With respect to reference frame k, convected with
produce temperatures and material degradation localized the surface loading according to 4 -4 +, 6onvt, dis-
mainly near the contact surface permits consideration of placements and temperatures are quasi-stationary (6, Ill.
a semi-infinite solid with contact loads moving along a Thu s an. teXperatu (XI -t na), so that
plane boundary. Applying the plane boundary idealiza- Thus, e.g., u, (Xe, X , ti-u, (X1 -Vt, X,), so that
tion to problems involving curved surfaces gives an a
error in the governing equations of order r , with (-k) k
P0 the Pmcl~tNumber and R the ratio of the surface t , \t J' -tI,\- *i W1
radius of curvature to a typical length (e.g., the sur- X 1

face contact width). In addition, only a two-
dimensional model is needed because high-speed sliding etc. Hence, velocities and accelerations referred to
leads, essentially, to suppression of heat flow in the material coordinates ,' can be expressed entirely in
surface direction perpendicular to sliding (11]. The terms of convected coordinate X1, without explicit
model utilized is a plane strain one, applicable to a dependence on t. Application to the nonlinear thermo-
large contact lsngth in the latter direction, elastic equations referred to material coordinates X4

(15] permits their expression in terms of the convectedFigure I shows the undeforIed solid, subjected to coordinates. The two momentum equations end the heat
mechanical loads p (X1) and mg p (XI ) over the surface equation (after rearranging and nondiuensionalizing)
region O X, & 2a, X. 0, i Y, < -, moving with constant are then, respectively,
speed V relative to the bulk solid; the latter load is

a1 -d r c i n o r i a e s s e k a 1 , ) 1 f e eV2 1 .fric tio n a l force per u n it o f m a te ria l th ic k n e ss in the 2 2 v 1 2 2 , 2
with respect to the material, whereas system Y. is fixed 1 1 i l 1 12 1
with respect to the loading. The material is considered v2 1 2 + (v2122 v 112 2
to be isotropic, free of body forces, and to have +(-'u 2,11 -- 2,I v---
temperature-dependent material parameters. In addition, 111 '' ill 12
the friction coefficient is generally a nonlinear func- v 2 v 2
tion of velocity, linear asymptotically at high sliding T (113(-2 ' 2 01 (2)
speeds. Considering steady-state, high-spee sliding ill ,1 111
fixes the friction coefficient and rules out self-
sustained ("chattering) oscillations t12]. The surface



except in regions where (T.'LI +T'23) is OPO). A first
2 v 2 v 2 approximation to the solution calculated from this re-

t) 1  1
2  l + 11 F1  duced differential order problem would be incapable of

12 11 ' 122/ 1 1 22 1,22 L- satisfying all specified thermal boundary conditions -in particular, rq. (7) for t - 0 vs. T' -0 as g -
2] , 2 v 2 Analysis for the relevant characteristic curves clari-211) 22 ies this difficulty. The direction cosines N of

122)2,112122122  22such a curve, related by n . W,- 1, are found (161 from
22 the relation det(A)- 0 where A is the coefficient

2T13) 2, 23--- mati for t(.) vector LUt., (transposed) in Zqs. (2) -
-2 T 12 T2 3) (4), with 6/6, replaced by n, (1-1,2) (171. Tht re-sulting algebraic equation is of fifth order (rather
v(v 2 + 2 v 2 v42 than sixth for the full problem) and has a real root

(311) U 1  +( 312 11. - .- n 0. giving curves C -constant generated by reduction
T T 1,12 7T/ 

2
,11 +( vT /,12 in order of the heat equation. Vanishing temperatures

prescribed (as Cauchy data) as - -- should then define

1 l ~ ,2 ,2 temperatures throughout the entire semi-infinite domain- " (1 1 + T '22 ) ( (T ) (T "2) considered. The discrepancy so generated as C2 -0 indi-
0 0 cates the existence there of a boundary layer with

V v 2 aT'/F large.
g (.1) ] 0, (4i) The remaining quartic polynomial generated by

det(A) .0 is presumed to not yield real roots (real

characteristics) associated with elastic waves because
Similarly, the boundary conditions take the form: of the smallness of V/v., noted above. Another possi-

bility, however, is that the momentum equations may fail
to be elliptic for displacement gradient magnitudes

Z22 (i' 0) - [pNlIU," 1 + PN22U2, 2 PNl2l 2 l + PN2lU2, 1 exceeding certain bounds, as discussed recently (18, 19)

p(tl )  0 ! i 1 r for isothermal plane finite elastostatics; treatment of
- {p ,_ } , 1 thermal effects herein gives revised criteria. Consid-OT' 0 it (0,1] eration in what follows is restricted to the assumption,

considered plausible for typical sliding situationso
that displacement gradients and temperatures are only

222,1 2=0 moderately large away from the contact; thus, the latterpossibility fails to materialize. Then it is inferred

{ - 0 s !9 (171 that the quartic has only imaginary roots, so only
= 0 , d (0,I] J(6) the above-mentioned boundary layer near A - 0 occurs.

It can be shown that the boundary layer identified
llr(91)  above has a thickness of order O{P1 )c correspond. g

Q(0)L Po 72T 0. 0
°  

e "0 to stretched thickness coordinate I • )2 Ca. Thermo-
T -g joco0oM elastic behavior therein is controlled mainly by reduc-

koT 0 2 0 1 d(0,1]j tion of the heat equation from elliptic to parabolic
(7) type (having characteristics perpendicular to the con-

tact surface rather than parallel to it as in the

The coefficient terms vt, p,,k appearing in Eqs. (2) - reduced case indicated above) and of the momentum equa-
(6) are defined in Appendix A. In addition, dimension- tions to ordinary differential variety. Outside the

less variables are U, - u 1 , - X 1 , T'- (T-T )/T o ,  boundary layer, temperatures are generally suppressed.

f (T') - c, (T')/co , g T') - k (T')/1, and abbreviations In contrast, deformations are not so restricted, but

( ) ," 6( )/q,, ( )'- a ( )/6T', 1- 2a apply. Po is the even to first approximation are associated with a po-
fPeclet Number Vlpoce,/%. The 'Ijk all have dimensions tential theory problem involving elliptic equations (see

of (velocity) and vjj 1 , vlaa generalize the classical below). Significant boundary layer contributions to the
isothermal speeds of dilatational and shear waves, deformations are exhibited only in higher approximations.
respectively. Detailed analysis (17) shows that the boundary

Equations (2) - (4) differ from versions given pro- layer is multi-structured and contains subregions mailer
viously [15] by allowing nonlinear (rather than simply than O(P 1 /

2 ) in which various approximations apply.
linear) thermal variations of material parameters and by For example, in small regions of size O(L) about
not neglecting T' compared to 1 in 4 ... , H _ -0,1 no approximation is possible and the full ellip-

ever, dependence of thermal conductivity on strain 1l5, tic equations (and potential solutions) govern. The

apparently ne~er quantified experimentally, is neglected boundary layer structure is shown schematically in

herein; further, the formulation allows for thermal de- Figure 2; some features are analogous to those for

pendence of third order elastic parameters v, %, v, boundary layer flow past a flat plate (20,211.

but lack of data forced use of only isothermal values
in calculations. Potential Theory Solutions

In theory, it is possible to obtain a solution by
Boundary Layer successive iteration between the heat and momentum

Typical sliding contact speeds are much maller equations, considering each in turn separately. This
than elastic wave speeds (e.g., by orders 9 le vs. concept gives at least qualitative insight into the
l0P in./see for a typical steal), although they can solution character. Treating the nonlinearities in the
yield large values of Pa. Thus, terms (1- (v/v11 1  , heat equation as a nonhomogeneous term p* (gj,!j) and
etc., in momentum Zqs. (2), (3) can be considered to be removing thermal dependT9cy of k (i.e., of g) by a
of order 0(1). Second derivatives of T' in the heat
Eq.(4), on the other hand, are multiplied by 11 which transformation [6] c - g(T")dT', due originally to
becomes mall for large Pa. Hence, the term containing o
these derivatives becomes vanishingly mall for large PO,



method [25], the difference being that the present com-
plex functions are displacement, not stress, functions.
Thus the (usual and generalized) analyticity properties

~ a... .~.utilized herein follow from the (nonhomogeneous) bihar-monic character of the Galerkin vector, rather than that
of an Airy stress function; complicated considerations

W of displacement compatibility are thus avoided by this
S'.-'displacement formulation.

The complex form of boundary conditions (5), (6) is

.1 2(Cl)1 1  (CI) --Cl)

Figure 2 Schematic Representation of the Thermal
Boundary Layer Structure a2 ( 1)4'(C 1)+ al(Cl)- ('l) + C 1  (C1 )

Kirchhoff (221, permifs expression of the solution for + Y' ( 1 ) fa 3 (CI)S(CI), (10)
pasc -. , +c& where

1pa w q. hr p with S(CI) and its complex conjugate S(Q), involving1 2 (C ci) complicated combinations of surface Piola-Kirchhoff
ZA( I,2,P - a stresses and linear and nonlinear displacement gradiento and temperature terms, assumed known from previous iter-

p ation.. Equations (10) are analogous to uskholishvili
K( ) 2 +t (8) (251, Eqs.(93.3), (93.4), with the added complication0 2that a (CI), a2 (C) are surface values of functions that

o can vary spatially due to thermally-induced material
inhomogeneity. However, the functions wi (z,f)l

, 2 • do 2 ai (z, )O'(z) and w , (z,) - (z, ) '(z ) satisfy nonhomo-
0 geneous Cauchy-Riemann equations 3w /H- N w4,

A, ..,at log a, (z,f) I/'a!, (k - , 2), etc. and, hence, areIK " )  
2 + q) (9) specializations of generalized analytic functions (241.2 Consequently, the %, (z,f) possess generalized Cauchy

kernels P, (z, ), viz.:
+ r 0 ( C 2 + C )p (Z' z)Olk (z,-z) - , (k. l,2)

and V (p) is the modified Bessel function of the second (z - z

kind, order zero. Equation (8) is equivalent to a pre- Z B- Z A W ',!V) Cd,
vious result t22, p. 2691, obtained by superposition of lk (Z'Z ) =- - Z)(
heat sources, for only surface heat application by uni-
form heat flux over a strip area. Asymptotic considera-
tions (171 show reduction as Po -m of Eqs. (8), (9) toform (6 haingkerels~ - ~) 1 2

ex(-(~+1)~/where zI denotes a point on the boundary and domain D
f ( h g e g U * is the semi-infinite region under consideration.4(!t " )1 with ".0 for Q, and * .*1W for ch; inte- Terms T'?F in Eqs. (10) are boundary values

gration for C, in q then extends to 0, 91, I for CI <0, of functions zt (z), F-z holomorphic in the lower
0 e C, f, t > I, respectively,and in A always to 91 half-plane and wi (C, w , C) are boundary values(other ranges of C, Yield exponentially mall of functions w1 (zj), w2 (z,z) analytic in a generalizedcontributions). sense in the upper and lower half-planes, respectively.

Thermal dependence of the elastic material param- Application of the usual Cauchy integral theorem (251
eters can be mollified by transforming space variables and a generalized Cauchy formula (24, p. 1751 thus yields
in the momentum equations in analogy to that indicated relations for 0' (z), T'(z):
above. Treating remaining nonlinearities and the accel- a 3()S(-
eration terms in thee equations as equivalent body a --..
forces yields equations amenable to elastic potential a I (r,!)(z) -.- L s( c1 )d
solution. Thus, a formulation similar to Papkovitch 1231
Shows that the Galerkin vector satisfies a nonhomogene- a 1 (z, C1
ous biharmonic equation and Jientifies aousginesq- . ,e - l ,
Papkovitch functions Do, aj, 4 separable into homogen-
*us (harmonic).and particular components Do ti ,, I 1 2 (a, C1 )

and 30p, , %,, respectively. The former are related a (12a)to analytic functions S), W of a COP variable C , 2 ( ()dz iC, (Cl, Q transformed space vkriablesL by -"
km + ia. 2

(1+6) # U) and b%#/bi0 (1 * A)1(t), with
a constant. Relations of the same type applied to

s,, &t,, R, define generalized analytic functions
#, (2,1), , (,i) in th sense treated by Vekua (241.
As a result, the complex displacemnt Us + iU can be
expressed as a generalization of the usual gorm (25,
p.1121, the additional ter being due to 0, (s,),

, (a ,J). Traction boundary eia iont (5), (6) are QC(t1 ) is the dimeneionless surface heat flux, given
treated effectively by a variant of taskhlishvilis ~by the left-hand side of Zq. (7).



Y, a3 (Cl)S (C l ) initial value problem in (1, utilizing forward inegra-
i Cz) - Z"  d~l" a (z~ ' (2) -# (z) tion through explicit finite differences, would elimi-- 1 nate the need for boundary values at A ... . The bas-c-

Se 1 2 (2, C) ally elliptic character of Eqs. (2), (3) and the ellip-
a - 1 I ( C')d ticity of Eq. (4) about F -0 , 1, t2 "0, together with

'" ." - 21 z stability questions inherent in explicit schemes, how-
ever, indicated treatment as purely a boundary value

ewl(z, Ci) problem, using an implicit difference scheme. An effort
a 1(] , (C)dc1  (12b) to limit the number of grid points, dictating a compro-

21 1 - z 1 mise between high grid detail and the magnitude of
S1 a , used, resulteO in a ,, - 2.5 and specification

there of temperatures and (approximately) vanishing
Equations (12) generalize results of Meskhelishvili [25], displacement gradients Ult, U2  obtained by linear
Eqs. (93.6), (93.7), and demonstrate relevance of an analysis. Boundary conditions '(;) - (7) utilized a
elastic potential solution for nonhomogeneous materials; Hertzian distribution of contact pressure p(CI). The
the first is a linear integral equation, theoretically elementary solution for temperatures then involves con-
solvable (1. fluent forms of a hypergeometric function of two variables

[17], but the usual result [22) based on a uniform
NUMERICAL ANALYSIS average p(t 1 ) over the contact gives an asymptotically
General accurate approximation it = 2.5.

The complexity of Eqs. (2) - (7) rules out their Finite Difference Form of the Governing Equations
complete analytical treatment. Thus, their solution
must be accomplished numerically, using iteration. To Development of the finite difference approximation

operations with of the governing equations followed the form of these
enhance con-veence, simuaeos oiterative finite equations exhibiting isolated highest derivatives of
difference scheme for this purpose idealized the semi- the dependent variables. Thus, difference operators
infinite region by a finite rectangular grid, Figure 3, were applied directly to Eqs. (2) - (7). Use of nonuni-
guided by analytical results mentioned above. Detailed form spacings, Figure 3, however, necessitated more

application of these results to determine grid size general forms of difference operators than are commonly
and spacing is described elsewhere [17]. Briefly, available. Thus, approximation of derivatives with

however, known exponential decay of temperature in error, order of the grid spacing squared, generally
front of the contact (, < 0) and through the boundary involved 12 grid points, whereas uniform spacing

layer thickness facilitates specification of vanishing requires nine.

temperatures and of displacements obtained by linear The 3 X 34 x 10 - 1020 difference equations have the
analysis at the boundaries C, "- 0.5 and 1 '10 p,-1  matrix form

(I 10). Behind the contact (&j> 0), temperature decay
is merely algebraic, so choosing tj,,, large enough for ACUIU-B; (13)
specification of (approximately) vanishing temperatures
there is not feasible, complicated construction of Eq. (13) is detailed else-

where [17]. Equation (13) is nonlinear because
If Eqs. (2) - (4) were of either parabolic or matrix A is a function of solution vector U, consisting

parabolic-hyperbolic character, formulation as an of U1 , Ua, and T' taken successively at each point (1,J)

fu,.u.... ..Id *49..]

.., .,,-i .. ...w ., .. . .. . -,,

/ 0

,...,- ..,. as ,1 .

Figure 3 Sample Finite Difference Grid for Po 1000, Illustrating Variable Grid Spacing Needed
Through the boundary Layer Thickness and at the Contact Region Leading and Trailing Ed
(Spacings Smller than SP'" not shown)

___________________________ c )



left to right in rows I through 10. Matrix A is unsym- certain. Progress was limited, however, because large
metric but has banded character, with 41 diagonals on storage requirements for triangularization of A made
which nonzero elements can occur. Thus, A has (020)2 * each linear solution expensive; moreover, setting relax-
1,040,400 elements, but only 27,216 are nonzero. Gen- ation factors u by trial and error proved inefficient.
eration of the difference grid, calculation of cOeffi- Thus, trial starting values of the U, generated by
cients for the difference equations, construction of Eq. (14), if not close to those of the true solution,
matrix and vector 8 and solution of Eq.(13) were defined "long " Newton-Raphson tangents (hyperplanes inprogrammed for IBM 3033 computation. NAG (26] sub- 1020-degree Euclidian space), giving new values of the
routines F03AJF and F04APF, designed for large, sparse U, from Eq. (13) often far from the starting values.
matrices, were used to triangularize matrix A and solve Apparently, convergence speed was dependent on grid
Eq. (13) by Gaussian elimination. Economy of storage point location, seemingly analogous to locally varying
space required identification of only nonzero elements degree of stability in forward integration of nonlinear
of A and their locations in A. However, nonzero ele- parabolic equations (28, p.325). Convergence speed was
ments occur in four diagonal bands II, 14, 11, and 5 undoubtedly dependent on local grid spacing ratio h./h,
elements in width, separated by diagonal null bands each also; although this ratio is, by far, not as critical
102 zeros in width. Hence, storage requirements for in boundary value problems as in initial value formula-
the triangular factors considerably exceed that for the tions, large values of h,/h2 gave locally anomalous
original 27,216 nonzero elements; the actual number of results (mainly for T' central to the contact surface).
elements generated during triangularization is about The searches made indicated that a particular choice of
100,000. the % offered possible convergence at some locations

but divergence at others. Truly effective relaxation
Numerical Calculations must, then, allow for distinct 41, ft, ub at each of

Numerical calculations treated a typical contact 340 points, but setting all such values by trial and
situation, based on Figures I and 3, wherein values of error would be impossible.
sliding speed (0.8611 m/s), P~clet Number (P0 -1000), A more efficient search technique considers the
average heat flux (4.43x10' N/(m*s)) and thermal quantity A(U)U-B of Eq.(13) to represent the gradient
parameters were chosen to correspond to those of an g (U) of some calar function f (U). Thus, satisfaction
earlier study. That study [61 considered temperature- of-Eq. (13) is equivalent to finding the global minimum
dependent thermal parameters; thus, an envisioned com- of hypersurface f(U) -0. A quadratic expression for
parison of results obtained therein for SAE 1010 steel f(U) applies when A is a symmetric matrix of constants;
with those sought in the present study for the same a more general expression [171 accounts for unsymmetry
material offered to clarify the effect of the added of A and dependence of A on U. Minimization of f(U)
nonlinearities. Quadratic variations of I., 1 with T' would be difficult. indeed,-starting values for some
were used, based on tabulated information (101 for E, searches led to det (A(U) < 0, indicating A(U) not
v; similar variations were employed for v1, v2, v3 , everywhere positive definite in the space of U and f(U)
but only isothermal values for iron (27) could be not everywhere convex. Physical realism, however,
located as the closest applicable. Although j is a requires restriction to U giving positive definite A(U).
complicated function of V, T' and other factors, in- Symmetry of A(U) would guarantee n--1020 mutually
formation from several sources [171 suggested a tem- orthogonal eigenvectors, "conjugate" with respect toperature dependency of error function type (S-ghaped) A(U) spanning the space of U and providing n -1020with * ranging from about 0.115 for 20 - 205 C o mutually orthogonal search directions for conjugate

about 0.400 above 5950 C. Hertzian pressures used gradient minimization" . Definiteness of AUI ensures
corresponded to a contact load of 5.838X 1d N/(m's). that none of the search directions is in the null space

Direct searches were made for values of U1, U2, T' of AU) and positive definiteness permits quadratic
at the 340 grid points. Ideally, these would lead to termination (theoretically, in n steps) of the minimiza-
solution of nonlinear Eq. (13) by a sequence of Newton- tion algorithm (291.
Raphson iterations (Newton's method in n dimensions, Difficulties related to unsymmetry of A can be
-1020 for 3X340 unknowns), corresponding to succes- avoided by utilizing the Hessian matrix
sive linear solutions with updating of matrix coeffi-
cients. In theory, this process is repeated until 2f a
convergence is attained, but modification utilizing H(U) - - A (U) +- U. (15)
underrelaxation (281 was found necessary to enhance, -~
or possibly guarantee, convergence. Thus, for itera-
tion k an accepted value of each component U, of U is: Practical calculation of h/aU for Eq. (15) utilizes

linear approximation for a small variation Ui

U wiUi (l-wi)u i  , i- 1, ... ,1020. (14) au a A(U+ u) - A(u) . (16)

in Eq. (14), the U are coeonents of the current
solution vector and the t " are corresponding com- For independent (scalar) variations AU of individual
ponents from the previous iteration. The wt are relax- U1, (A/U)LU - (aA/aU1 )LU, (no sum); thus Eq. (16) gives
ation factors, assigned uniform, distinct values a,
(%, ab for U1 , Us , T', respectively, variable with k, 1
although variation of the ;% with location could have ?- ( C(U+.uie ) -A(U)) . (17)
been allowed also. Underrelaxation rather than over- aui
relaxation, refers to choices mt % 1. dictated by solu-
tion character; thus, Zq. (14) indicates starting values
obtained by interpolation between the results of the
previous two iterations. 2

The above-mentioned searches aimed at establishing Conjugacy in a wider sense for a square, positive
the general range of U,, Us, ' wherein the true solu- definite matrix requires only that the search directions
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